Systemic movement of FT mRNA and a possible role in floral induction

نویسندگان

  • Stephen D. Jackson
  • Yiguo Hong
چکیده

FLOWERING LOCUS T (FT) protein is known to be part of the mobile flowering inducing "florigen" signal in plants, but it may not be acting alone. This article reviews the data that FT mRNA can also move systemically throughout the plant and into the shoot apical meristem (SAM) independently of the FT protein. There is a promotion of flowering when increased levels of virally expressed FT mRNA are present together with endogenously produced FT protein in inducing conditions, even if the additional FT mRNA is non-translatable and thus not increasing the overall levels of FT protein. A specific sequence, or "zip code" of the FT mRNA is required for systemic movement and this sequence binds a specific protein(s) in plant extracts. This raises the possibility the FT mRNA may be moving systemically through the plant and into the SAM as an RNA-protein complex, whether FT protein is also a component of this mobile complex remains to be determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobile FT mRNA contributes to the systemic florigen signalling in floral induction

In inducing photoperiodic conditions, plants produce a signal dubbed "florigen" in leaves. Florigen moves through the phloem to the shoot apical meristem (SAM) where it induces flowering. In Arabidopsis, the FLOWERING LOCUS T (FT) protein acts as a component of this phloem-mobile signal. However whether the transportable FT mRNA also contributes to systemic florigen signalling remains to be elu...

متن کامل

A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA.

The Arabidopsis flowering locus T (FT) gene encodes the mobile florigen essential for floral induction. While movement of the FT protein has been shown to occur within plants, systemic spread of FT mRNA remains to be unequivocally demonstrated. Utilizing novel RNA mobility assay vectors based on two distinct movement-defective viruses, Potato virus X and Turnip crinkle virus, and an agroinfiltr...

متن کامل

FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits.

Cucurbita moschata, a cucurbit species responsive to inductive short-day (SD) photoperiods, and Zucchini yellow mosaic virus (ZYMV) were used to test whether long-distance movement of FLOWERING LOCUS T (FT) mRNA or FT is required for floral induction. Ectopic expression of FT by ZYMV was highly effective in mediating floral induction of long-day (LD)-treated plants. Moreover, the infection zone...

متن کامل

Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE.

Flowers form on the flanks of the shoot apical meristem (SAM) in response to environmental and endogenous cues. In Arabidopsis (Arabidopsis thaliana), the photoperiodic pathway acts through FLOWERING LOCUS T (FT) to promote floral induction in response to day length. A complex between FT and the basic leucine-zipper transcription factor FD is proposed to form in the SAM, leading to activation o...

متن کامل

The quest for florigen: a review of recent progress.

The photoperiodic induction of flowering is a systemic process requiring translocation of a floral stimulus from the leaves to the shoot apical meristem. In response to this stimulus, the apical meristem stops producing leaves to initiate floral development; this switch in morphogenesis involves a change in the identity of the primordia initiated and in phyllotaxis. The physiological study of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012